Simple harmonic motion (SHM) is the one-dimensional shadow of UCM

Mass on a spring

x - displacement from equilibrium

$$
\begin{gathered}
\frac{\left|a_{x}\right|}{a_{\mathrm{IN}}}=\frac{|x|}{r} \\
\left|a_{x}\right|=\frac{a_{\mathrm{IN}}}{r}|x| \\
\left|a_{x}\right|=\omega^{2}|x| \\
a_{x}=-\omega^{2} x \\
\frac{a_{\mathrm{IN}}}{r}=\omega^{2} \\
\omega^{2}=\frac{v_{\mathrm{TAN}}^{2}}{m}=\omega^{2} r \\
x(t)=A \cos \left(\sqrt{\frac{k}{m}} t+\delta\right)=A \cos \left(\frac{2 \pi}{T} t+\delta\right) \\
\omega=\frac{2 \pi}{T} \Rightarrow T=\frac{2 \pi}{\omega} \\
T=\frac{1}{f}=2 \pi \sqrt{\frac{m}{k}}
\end{gathered}
$$

$$
\begin{aligned}
& a_{x}=\frac{\Sigma F_{x}}{m} \\
& a_{x}=\frac{-k|\Delta x|}{m} \\
& a_{x}=\frac{-k x}{m} \\
& a_{x}=-\frac{k}{m} x
\end{aligned}
$$

ω - angular velocity of UCM that completes one lap in the same duration of time that SHM of interest completes one cycle of oscillation
A - amplitude (maximum linear or angular distance from equilibrium)
T - period (repetition time)
When magnitude of restoring net force (torque) is
\propto (angular) displacement, T is independent of A
f - frequency (oscillations per unit time)

